*** Welcome to piglix ***

7075 T6 aluminium


7075 aluminum alloy is an aluminum alloy, with zinc as the primary alloying element. It is strong, with a strength comparable to many steels, and has good fatigue strength and average machinability. It has lower resistance to corrosion than many other aluminum alloys, but has significantly better corrosion resistance than the 2000 alloys. Its relatively high cost limits its use.

7075 aluminum alloy's composition roughly includes 5.6–6.1% zinc, 2.1–2.5% magnesium, 1.2–1.6% copper, and less than a half percent of silicon, iron, manganese, titanium, chromium, and other metals. It is produced in many tempers, some of which are 7075-0, 7075-T6, 7075-T651.

The first 7075 was developed in secret by a Japanese company, Sumitomo Metal, in 1943. 7075 was eventually used for airframe production in the Imperial Japanese Navy.

Aluminium 7075A has a density of 2.810 g/cm³ (0.1015 lb/in³).

The mechanical properties of 7075 depend greatly on the temper of the material.

Un-heat-treated 7075 (7075-0 temper) has maximum tensile strength no more than 280 MPa (40,000 psi), and maximum yield strength no more than 140 MPa (21,000 psi). The material has an elongation (stretch before ultimate failure) of 9–10%. It is very highly corrosion-resistant and has good strength.

T6 temper 7075 has an ultimate tensile strength of 510–540 MPa (74,000–78,000 psi) and yield strength of at least 430–480 MPa (63,000–69,000 psi). It has a failure elongation of 5–11%.

The T6 temper is usually achieved by homogenizing the cast 7075 at 450 °C for several hours, quenching, and then aging at 120 °C for 24 hours. This yields the peak strength of the 7075 alloy. The strength is derived mainly from finely dispersed eta and eta' precipitates both within grains and along grain boundaries.

T651 temper 7075 has an ultimate tensile strength of 570 MPa (83,000 psi) and yield strength of 500 MPa (73,000 psi). It has a failure elongation of 3–9%. These properties can change depending on the form of material used. Thicker plate may exhibit lower strengths and elongation than the numbers listed above.


...
Wikipedia

...