*** Welcome to piglix ***

A value


A-Values are numerical values used in the determination of the most stable orientation of atoms in a molecule (Conformational Analysis), as well as a general representation of steric bulk. A-values are derived from energy measurements of a monosubstituted cyclohexane ring.Substituents on a cyclohexane ring prefer to reside in the equatorial position to the axial. The difference in Gibbs free energy (ΔG) between the higher energy conformation (axial substitution) and the lower energy conformation (equatorial substitution) is the A-value for that particular substituent.

A-values help predict the conformation of cyclohexane rings. The most stable conformation will be the one which has the substituent or substituents equatorial. When multiple substituents are taken into consideration, the conformation where the substituent with the largest A-value is equatorial is favored.

The utility of A-values can be generalized for use outside of cyclohexane conformations. A-values can help predict the steric effect of a substituent. In general, the larger a substituent’s A-value, the larger the steric effect of that substituent. Methyl has an A-value of 1.74 while tert-butyl has an A-value of ~5. Because the A-value of tert-butyl is higher, tert-butyl has a larger steric effect than methyl. This difference in steric effects can be used to help predict reactivity in chemical reactions.

Steric effects play a major role in the assignment of configurations in cyclohexanes. One can use steric hindrances to determine the propensity of a substituent to reside in the axial or equatorial plane. It is known that axial bonds are more hindered than the corresponding equatorial bonds. This is because substituents in the axial position are relatively close to two other axial substituents. This makes it very crowded when bulky substituents are oriented in the axial position. These types of steric interactions are commonly known as 1,3 diaxial interactions. These types of interactions are not present with substituents at the equatorial position.


...
Wikipedia

...