*** Welcome to piglix ***

Accelerator-driven sub-critical reactor


An accelerator-driven subcritical reactor is a nuclear reactor design formed by coupling a substantially subcritical nuclear reactor core with a high-energy proton accelerator. It would use thorium as a fuel, which is more abundant than uranium.

The neutrons needed for sustaining the fission process would be provided by a particle accelerator producing neutrons by spallation. These neutrons activate the thorium, enabling fission without needing to make the reactor critical. One benefit of such reactors is the relatively short half-lives of their waste products. The high energy proton beam impacts a molten lead target inside the core, chipping or “spallating” neutrons from the lead nuclei. These spallation neutrons convert fertile thorium to fissile uranium-233 and drive the fission reaction in the uranium.

Thorium produces 200 times more power per kilogram than uranium. Further, thorium reactors can generate power from the plutonium residue left by uranium reactors. Thorium does not require significant refining, unlike uranium and has a higher neutron yield per neutron absorbed.

The Electron Model of Many Applications (EMMA) is a new type of particle accelerator that could support an ADSR. The prototype was built at Daresbury Laboratory in Cheshire, UK. Uniquely, EMMA is a new hybrid of a cyclotron and a synchrotron, combining their advantages into a compact, economical form. Emma is a non-scaling fixed-field alternating-gradient (FFAG) accelerator. The prototype accelerates electrons from 10‑20 MeV, using the existing ALICE accelerator as the injector. In FFAG accelerators the magnetic field in the bending magnets is constant during acceleration, causing the particle beam to move radially outwards as its momentum increases. A non-scaling FFAG allows a quantity known as the betatron tune to vary unchecked. In a conventional synchrotron such a variation results in beam loss as the tune hits various resonance conditions. However, in EMMA the beam crosses these resonances so rapidly that the beam survives. The prototype accelerates electrons instead of protons, but proton generators can be built using the same principles.


...
Wikipedia

...