*** Welcome to piglix ***

Acridine orange

Acridine orange
Acridine orange
Ball-and-stick model of the acridine orange molecule
Names
Preferred IUPAC name
N,N,N',N'-Tetramethylacridine-3,6-diamine
Systematic IUPAC name
3-N,3-N,6-N,6-N-Tetramethylacridine-3,6-diamine
Other names
3,6-Acridinediamine

Acridine Orange Base
Acridine Orange NO
Basic Orange 14
Euchrysine
Rhoduline Orange
Rhoduline Orange N
Rhoduline Orange NO
Solvent Orange 15

Waxoline Orange A
Identifiers
3D model (Jmol)
ChEBI
ChemSpider
ECHA InfoCard 100.122.153
EC Number 200-614-0
KEGG
MeSH Acridine+orange
PubChem CID
RTECS number AR7601000
Properties
C17H19N3
Molar mass 265.36 g·mol−1
Appearance Orange powder
Hazards
Irritant Xi Dangerous for the Environment (Nature) N
S-phrases S26 S28 S37 S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Acridine Orange Base
Acridine Orange NO
Basic Orange 14
Euchrysine
Rhoduline Orange
Rhoduline Orange N
Rhoduline Orange NO
Solvent Orange 15

Acridine orange is an organic compound. It is used as a nucleic acid-selective fluorescent dye useful for cell cycle determination. Being cell-permeable, it interacts with DNA and RNA by intercalation or electrostatic attractions respectively. When bound to DNA, it is very similar spectrally to fluorescein, with an excitation maximum at 502 nm and an emission maximum at 525 nm (green). When it associates with RNA, the excitation maximum shifts to 460 nm (blue) and the emission maximum shifts to 650 nm (red). Acridine orange will also enter acidic compartments such as lysosomes and become protonated and sequestered. In these low pH conditions, the dye will emit orange light when excited by blue light. Thus, acridine orange can be used to identify engulfed apoptotic cells, because it will fluoresce upon engulfment. The dye is often used in epifluorescence microscopy.

At a low pH (3.5), when acridine orange is excited by blue light, it can differentially stain human cells green while staining prokaryotes bright orange for detection with a fluorescence microscope. This differential staining capability allows more rapid scanning of smears at a lower magnification (400x), than by Gram stain (1000x). Bright orange organisms are easily detected against a black to faint green background.

When an acridine orange binds with DNA, it exhibits an excitation maximum at 502 nm (cyan) and an emission maximum at 525 nm (green). When it binds with RNA, the excitation maximum is located at 460 nm (blue) and the emission maximum is located at 650 nm (red). This is all due to the electrostatic interactions occurring when the acridine molecule intercalates between the nucleic acid base pairs.


...
Wikipedia

...