*** Welcome to piglix ***

Adjacency list model


In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a vertex in the graph. This is one of several commonly used representations of graphs for use in computer programs.

An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighboring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first class objects, and in what kinds of objects are used to represent the vertices and edges.

The main operation performed by the adjacency list data structure is to report a list of the neighbors of a given vertex. Using any of the implementations detailed above, this can be performed in constant time per neighbor. In other words, the total time to report all of the neighbors of a vertex v is proportional to the degree of v.

It is also possible, but not as efficient, to use adjacency lists to test whether an edge exists or does not exist between two specified vertices. In an adjacency list in which the neighbors of each vertex are unsorted, testing for the existence of an edge may be performed in time proportional to the minimum degree of the two given vertices, by using a sequential search through the neighbors of this vertex. If the neighbors are represented as a sorted array, binary search may be used instead, taking time proportional to the logarithm of the degree.

The main alternative to the adjacency list is the adjacency matrix, a matrix whose rows and columns are indexed by vertices and whose cells contain a Boolean value that indicates whether an edge is present between the vertices corresponding to the row and column of the cell. For a sparse graph (one in which most pairs of vertices are not connected by edges) an adjacency list is significantly more space-efficient than an adjacency matrix (stored as an array): the space usage of the adjacency list is proportional to the number of edges and vertices in the graph, while for an adjacency matrix stored in this way the space is proportional to the square of the number of vertices. However, it is possible to store adjacency matrices more space-efficiently, matching the linear space usage of an adjacency list, by using a hash table indexed by pairs of vertices rather than an array.


...
Wikipedia

...