Affective neuroscience is the study of the neural mechanisms of emotion. This interdisciplinary field combines neuroscience with the psychological study of personality, emotion, and mood.
Emotions are thought to be related to activity in brain areas that direct our attention, motivate our behavior, and determine the significance of what is going on around us. Pioneering work by Paul Broca (1878),James Papez (1937), and Paul D. MacLean (1952) suggested that emotion is related to a group of structures in the center of the brain called the limbic system, which includes the hypothalamus, cingulate cortex, hippocampi, and other structures. Research has shown that limbic structures are directly related to emotion, but non-limbic structures have been found to be of greater emotional relevance. The following brain structures are currently thought to be involved in emotion:
The right hemisphere has been proposed over time as being directly involved in the processing of emotion. Scientific theory regarding the role of the right hemisphere has developed over time and resulted in several models of emotional functioning. C.K. Mills was one of the first researchers to propose a direct link between the right hemisphere and emotional processing, having observed decreased emotional processing in patients with lesions to the right hemisphere. Emotion was originally thought to be processed in the limbic system structures such as the hypothalamus and amygdala. As of the late 1980s to early 1990s however, neocortical structures were shown to have an involvement in emotion. These findings led to the development of the right hemisphere hypothesis and the valence hypothesis.
The right hemisphere hypothesis asserts that the right hemisphere of the neocortical structures is specialized for the expression and perception of emotion. The Right hemisphere has been linked with mental strategies that are nonverbal, synthetic, integrative, holistic, and Gestalt which makes it ideal for processing emotion. The right hemisphere is more in touch with subcortical systems of autonomic arousal and attention as demonstrated in patients that have increased spatial neglect when damage is associated to the right brain as opposed to the left brain. Right hemisphere pathologies have also been linked with abnormal patterns of autonomic nervous system responses. These findings would help signify the relationship of the subcortical brain regions to the right hemisphere as having a strong connection.