In computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. An algorithm must be analysed to determine its resource usage. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process.
For maximum efficiency we wish to minimize resource usage. However, the various resources (e.g. time, space) cannot be compared directly, so which of two algorithms is considered to be more efficient often depends on which measure of efficiency is considered the most important, e.g. the requirement for high speed, minimum memory usage or some other measure of performance.
The importance of efficiency with respect to time was emphasised by Ada Lovelace in 1843 as applying to Charles Babbage's mechanical analytical engine:
"In almost every computation a great variety of arrangements for the succession of the processes is possible, and various considerations must influence the selections amongst them for the purposes of a calculating engine. One essential object is to choose that arrangement which shall tend to reduce to a minimum the time necessary for completing the calculation"
Early electronic computers were severely limited both by the speed of operations and the amount of memory available. In some cases it was realized that there was a space–time trade-off, whereby a task could be handled either by using a fast algorithm which used quite a lot of working memory, or by using a slower algorithm which used very little working memory. The engineering trade-off was then to use the fastest algorithm which would fit in the available memory.
Modern computers are significantly faster than the early computers, and have a much larger amount of memory available (Gigabytes instead of Kilobytes). Nevertheless, Donald Knuth emphasised that efficiency is still an important consideration:
"In established engineering disciplines a 12% improvement, easily obtained, is never considered marginal and I believe the same viewpoint should prevail in software engineering"
An algorithm is considered efficient if its resource consumption (or computational cost) is at or below some acceptable level. Roughly speaking, 'acceptable' means: it will run in a reasonable amount of time on an available computer. Since the 1950s computers have seen dramatic increases in both the available computational power and in the available amount of memory, so current acceptable levels would have been unacceptable even 10 years ago.