Names | |
---|---|
IUPAC name
2-(aminooxy)acetic acid
|
|
Other names
Carboxymethoxylamine
Hydroxylamineacetic acid U-7524 |
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
DrugBank | |
MeSH | Aminooxyacetic+Acid |
PubChem CID
|
|
UNII | |
|
|
|
|
Properties | |
C2H5NO3 | |
Molar mass | 91.066 |
Density | 1.375 g/cm3 |
Melting point | 138 °C (280 °F; 411 K) |
Boiling point | 326.7 °C (620.1 °F; 599.8 K) |
Hazards | |
Flash point | 151 °C (304 °F; 424 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Aminooxyacetic acid, often abbreviated AOA or AOAA, is a compound that inhibits 4-aminobutyrate aminotransferase (GABA-T) activity in vitro and in vivo, leading to less gamma-aminobutyric acid (GABA) being broken down. Subsequently, the level of GABA is increased in tissues. At concentrations high enough to fully inhibit 4-aminobutyrate aminotransferase activity, aminooxyacetic acid is indicated as a useful tool to study regional GABA turnover in rats.
Aminooxyacetic acid is a general inhibitor of pyridoxal phosphate (PLP)-dependent enzymes (this includes GABA-T). It functions as an inhibitor by attacking the Schiff base linkage between PLP and the enzyme, forming oxime type complexes.
Aminooxyacetic acid inhibits aspartate aminotransferase, another PLP-dependent enzyme, which is an essential part of the malate-aspartate shuttle. The inhibition of the malate-aspartate shuttle prevents the reoxidation of cytosolic NADH by the in nerve terminals. Also in the nerve terminals, aminooxyacetic acid prevents the mitochondria from utilizing pyruvate generated from glycolysis, thus leading to a bioenergetic state similar to that of hypoglycemia. Aminooxyacetic acid has been shown to cause excitotoxic lesions of the striatum, similar to Huntington's disease, potentially due to its impairment of mitochondrial energy metabolism. Aminooxyacetic acid was previously used in a clinical trial to reduce symptoms of Huntington's disease by increasing GABA levels in the brain. However, the patients who received the aminooxyacetic acid treatment failed to show clinical improvement and suffered from side effects such as drowsiness, ataxia, seizures, and psychotic behavior when the dosage was increased beyond 2 mg per kilogram per day. Also, the inhibition of aspartate aminotransferase by aminooxyacetic acid has clinical implications for the treatment of breast cancer, since a decrease in glycolysis disrupts breast adenocarcinoma cells more than normal cells.