The apparent place of an object is its position in space as seen by an observer. Because of physical and/or geometrical effects it may differ from the "true" or "geometric" position.
In astronomy, a distinction is made between the mean position, apparent position and topocentric position of an object.
The mean position of a star (relative to the observer's adopted coordinate system) can be calculated from its value at an arbitrary epoch, together with its actual motion over time (known as Proper motion). The apparent position is its position as seen by a theoretical observer at the centre of the moving Earth. Several effects cause the apparent position to differ from the mean position:
The Apparent Places of Fundamental Stars is an astronomical yearbook, which is published one year in advance by the Astronomisches Rechen-Institut in Heidelberg, Germany. It lists the apparent place of about 1000 fundamental stars for every 10 days and is published as a book and in a more extensive version on the Internet.
The apparent position of a planet or other object in the Solar System is also affected by Light-time correction, which is caused by the finite time it takes light from a moving body to reach the observer. Simply put, the observer sees the object in the position where it was when the light left it.
Theoretically, light-time correction could also be calculated for more distant objects, such as stars, but in practice it is ignored. The movement of an object since the light left it is not needed because the mean position is the mean position of where it appears to be, not of where it once was. Unlike planets, these objects basically appear to move in straight lines, so for normal use no complicated calculation is needed to find their mean position.