*** Welcome to piglix ***

Aroma


An odor or odour or fragrance is caused by one or more volatilized chemical compounds, generally at a very low concentration, that humans or other animals perceive by the sense of olfaction. Odors are also commonly called scents, which can refer to both pleasant and unpleasant odors. The terms fragrance and aroma are used primarily by the food and cosmetic industry to describe a pleasant odor, and are sometimes used to refer to perfumes, and to describe floral scent. In contrast, malodor, stench, reek, and stink are used specifically to describe unpleasant odor. The term smell (in its noun form) is used for both pleasant and unpleasant odors.

In the United Kingdom, odour refers to scents in general. In the United States and for many non-native English speakers around the world, odor generally has a negative connotation, as a synonym for stink; on the other hand, scent or aroma are used by those people to indicate "pleasant smells".

The sense of smell gives rise to the perception of odors, mediated by the olfactory nerve. The olfactory receptor (OR) cells are neurons present in the olfactory epithelium, a small patch of tissue in back of the nasal cavity. There are millions of olfactory receptor neurons that act as sensory signaling cells. Each neuron has cilia in direct contact with air. The olfactory nerve is considered the smell mediator, the axon connects the brain to the external air. Odorous molecules act as a chemical stimulus. Molecules bind to receptor proteins extended from cilia, initiating an electric signal.

The primary sequences of thousands of olfactory receptors are known from the genomes of more than a dozen organisms: they are seven-helix transmembrane proteins, but there are (as of July 2011) no known structures of any OR. There is a highly conserved sequence in roughly three quarters of all ORs that is a tripodal metal ion binding site, and Suslick has proposed that the ORs are in fact metalloproteins (most likely with zinc, copper and possibly manganese ions) that serve as a Lewis Acid site for binding of many odorant molecules. Crabtree, in 1978, had previously suggested that Cu(I) is "the most likely candidate for a metallo-receptor site in olfaction" for strong-smelling volatiles which are also good metal-coordinating ligands, such as thiols. Zhuang, Matsunami and Block, in 2012, confirmed the Crabtree/Suslick proposal for the specific case of a mouse OR, MOR244-3, showing that copper is essential for detection of certain thiols and other sulfur-containing compounds. Thus, by using a chemical that binds to copper in the mouse nose, so that copper wasn’t available to the receptors, the authors showed that the mice couldn't detect the thiols. However, these authors also found that MOR244-3 lacks the specific metal ion binding site suggested by Suslick, instead showing a different motif in the EC2 domain.


...
Wikipedia

...