In statistics and econometrics, an augmented Dickey–Fuller test (ADF) tests the null hypothesis of a unit root is present in a time series sample. The alternative hypothesis is different depending on which version of the test is used, but is usually stationarity or trend-stationarity. It is an augmented version of the Dickey–Fuller test for a larger and more complicated set of time series models.
The augmented Dickey–Fuller (ADF) statistic, used in the test, is a negative number. The more negative it is, the stronger the rejection of the hypothesis that there is a unit root at some level of confidence.
The testing procedure for the ADF test is the same as for the Dickey–Fuller test but it is applied to the model
where is a constant, the coefficient on a time trend and the lag order of the autoregressive process. Imposing the constraints and corresponds to modelling a random walk and using the constraint corresponds to modeling a random walk with a drift. Consequently, there are three main versions of the test, analogous to the ones discussed on Dickey–Fuller test (see that page for a discussion on dealing with uncertainty about including the intercept and deterministic time trend terms in the test equation.)