*** Welcome to piglix ***

Banach manifold


In mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions.

A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modelled on Hilbert spaces.

Let X be a set. An atlas of class Cr, r ≥ 0, on X is a collection of pairs (called charts) (Uiφi), i ∈ I, such that

One can then show that there is a unique topology on X such that each Ui is open and each φi is a homeomorphism. Very often, this topological space is assumed to be a Hausdorff space, but this is not necessary from the point of view of the formal definition.

If all the Banach spaces Ei are equal to the same space E, the atlas is called an E-atlas. However, it is not necessary that the Banach spaces Ei be the same space, or even isomorphic as topological vector spaces. However, if two charts (Ui, φi) and (Uj, φj) are such that Ui and Uj have a non-empty intersection, a quick examination of the derivative of the crossover map


...
Wikipedia

...