*** Welcome to piglix ***

Berry–Esseen theorem


In probability theory, the central limit theorem states that, under certain circumstances, the probability distribution of the scaled mean of a random sample converges to a normal distribution as the sample size increases to infinity. Under stronger assumptions, the Berry–Esseen theorem, or Berry–Esseen inequality, gives a more quantitative result, because it also specifies the rate at which this convergence takes place by giving a bound on the maximal error of approximation between the normal distribution and the true distribution of the scaled sample mean. The approximation is measured by the Kolmogorov–Smirnov distance. In the case of independent samples, the convergence rate is n−1/2, where n is the sample size, and the constant is estimated in terms of the third absolute normalized moments.

Statements of the theorem vary, as it was independently discovered by two mathematicians, Andrew C. Berry (in 1941) and Carl-Gustav Esseen (1942), who then, along with other authors, refined it repeatedly over subsequent decades.

One version, sacrificing generality somewhat for the sake of clarity, is the following:

That is: given a sequence of independent and identically distributed random variables, each having mean zero and positive variance, if additionally the third absolute moment is finite, then the cumulative distribution functions of the standardized sample mean and the standard normal distribution differ (vertically, on a graph) by no more than the specified amount. Note that the approximation error for all n (and hence the limiting rate of convergence for indefinite n sufficiently large) is bounded by the order of n−1/2.


...
Wikipedia

...