*** Welcome to piglix ***

Bilaterally symmetric


Symmetry in biology is the balanced distribution of duplicate body parts or shapes within the body of an organism. In nature and biology, symmetry is always approximate. For example, plant leaves – while considered symmetrical – rarely match up exactly when folded in half. Symmetry creates a class of patterns in nature, where the near-repetition of the pattern element is by reflection or rotation.

The body plans of most multicellular organisms exhibit some form of symmetry, whether radial, bilateral, or spherical. A small minority, notably among the sponges, exhibit no symmetry (i.e., are asymmetric). Symmetry was once important in animal taxonomy; the Radiata, animals with radial symmetry, formed one of the four branches of Georges Cuvier's classification of the animal kingdom.

Radially symmetric organisms resemble a pie where several cutting planes produce roughly identical pieces. Such an organism exhibits no left or right sides. They have a top and a bottom surface, or a front and a back.

Symmetry has been important historically in the taxonomy of animals; Georges Cuvier classified animals with radial symmetry in the taxon Radiata (Zoophytes), which is now generally accepted to be a polyphyletic assemblage of different phyla of the Animal kingdom. Most radially symmetric animals are symmetrical about an axis extending from the center of the oral surface, which contains the mouth to the center of the opposite, , end. Radial symmetry is especially suitable for sessile animals such as the sea anemone, floating animals such as jellyfish, and slow moving organisms such as starfish. Animals in the phyla Cnidaria and Echinodermata are radially symmetric, although many sea anemones and some corals have bilateral symmetry defined by a single structure, the siphonoglyph.


...
Wikipedia

...