Modern pharmaceutical manufacturing techniques frequently rely upon biotechnology.
Amongst the earliest uses of biotechnology in pharmaceutical manufacturing is the use of recombinant DNA technology to modify Escherichia coli bacteria to produce human insulin, which was performed at Genentech in 1978. Prior to the development of this technique, insulin was extracted from the pancreas glands of cattle, pigs, and other farm animals. While generally efficacious in the treatment of diabetes, animal-derived insulin is not indistinguishable from human insulin, and may therefore produce allergic reactions. Genentech researchers produced artificial genes for each of the two protein chains that comprise the insulin molecule. The artificial genes were "then inserted... into plasmids... among a group of genes that" are activated by lactose. Thus, the insulin-producing genes were also activated by lactose. The recombinant plasmids were inserted into Escherichia coli bacteria, which were "induced to produce 100,000 molecules of either chain A or chain B human insulin." The two protein chains were then combined to produce insulin molecules.
Prior to the use of recombinant DNA technology to modify bacteria to produce human growth hormone, the hormone was manufactured by extraction from the pituitary glands of cadavers, as animal growth hormones have no therapeutic value in humans. Production of a single year's supply of human growth hormone required up to fifty pituitary glands, creating significant shortages of the hormone. In 1979, scientists at Genentech produced human growth hormone by inserting DNA coding for human growth hormone into a plasmid that was implanted in Escherichia coli bacteria. The gene that was inserted into the plasmid was created by reverse transcription of the mRNA found in pituitary glands to complementary DNA. HaeIII, a type of restriction enzyme which acts at restriction sites "in the 3' noncoding region" and at the 23rd codon in complementary DNA for human growth hormone, was used to produce "a DNA fragment of 551 base pairs which includes coding sequences for amino acids 24–191 of HGH." Then "a chemically synthesized DNA 'adaptor' fragment containing an ATG initiation codon..." was produced with the codons for the first through 23rd amino acids in human growth hormone. The "two DNA fragments... [were] combined to form a synthetic-natural 'hybrid' gene." The use of entirely synthetic methods of DNA production to produce a gene that would be translated to human growth hormone in escherichia coli would have been exceedingly laborious due to the significant length of the amino acid sequence in human growth hormone. However, if the cDNA reverse transcribed from the mRNA for human growth hormone were inserted directly into the plasmid inserted into the escherichia coli, the bacteria would translate regions of the gene that are not translated in humans, thereby producing a "pre-hormone containing an extra 26 amino acids" which might be difficult to remove.