Developer(s) | Martin Karplus, Accelrys |
---|---|
Initial release | 1983 |
Stable release |
c40b1, c40b2 / 2015
|
Preview release |
c41a1, c41a2 / 2015
|
Development status | Active |
Written in | FORTRAN 77-95, CUDA |
Operating system | Unix-like: Linux, macOS, AIX, iOS |
Platform | x86, ARM, Nvidia GPU; Cray XT4, XT5 |
Available in | English |
Type | Molecular dynamics |
License | Proprietary |
Website | www |
Chemistry at Harvard Macromolecular Mechanics (CHARMM) is the name of a widely used set of force fields for molecular dynamics, and the name for the molecular dynamics simulation and analysis computer software package associated with them. The CHARMM Development Project involves a worldwide network of developers working with Martin Karplus and his group at Harvard to develop and maintain the CHARMM program. Licenses for this software are available, for a fee, to people and groups working in academia.
The CHARMM force fields for proteins include: united-atom (sometimes termed extended atom) CHARMM19, all-atom CHARMM22 and its dihedral potential corrected variant CHARMM22/CMAP. In the CHARMM22 protein force field, the atomic partial charges were derived from quantum chemical calculations of the interactions between model compounds and water. Furthermore, CHARMM22 is parametrized for the TIP3P explicit water model. Nevertheless, it is often used with implicit solvents. In 2006, a special version of CHARMM22/CMAP was reparametrized for consistent use with implicit solvent GBSW.
For DNA, RNA, and lipids, CHARMM27 is used. Some force fields may be combined, for example CHARMM22 and CHARMM27 for the simulation of protein-DNA binding. Also, parameters for NAD+, sugars, fluorinated compounds, etc., may be downloaded. These force field version numbers refer to the CHARMM version where they first appeared, but may of course be used with subsequent versions of the CHARMM executable program. Likewise, these force fields may be used within other molecular dynamics programs that support them.
In 2009, a general force field for drug-like molecules (CGenFF) was introduced. It "covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds". The general force field is designed to cover any combination of chemical groups. This inevitably comes with a decrease in accuracy for representing any particular subclass of molecules. Users are repeatedly warned in Mackerell's website not to use the CGenFF parameters for molecules for which specialized force fields already exist (as mentioned above for proteins, nucleic acids, etc.).