*** Welcome to piglix ***

Carbon nucleophile


A carbanion is an anion in which carbon is tervalent (forms three bonds) and bears a formal negative charge in at least one significant mesomeric contributor (resonance form). Absent π delocalization, carbanions assume a trigonal pyramidal, bent, or linear geometry when the carbanionic carbon is bound to three (e.g., methyl anion), two (e.g., phenyl anion), or one (e.g., acetylide anion) substituents, respectively. Formally, a carbanion is the conjugate base of a carbon acid:

where B stands for the base. A carbanion is one of several reactive intermediates in organic chemistry. In organic synthesis, organolithium reagents and Grignard reagents are commonly regarded as carbanions. This is a convenient approximation, although these species are almost always multinuclear clusters containing polar covalent bonds rather than true carbanions.

Carbanions are typically nucleophile and basic. The basicity and nucleophilicity of carbanions are determined by the substituents on carbon. These include

Geometry also affects the orbital hybridization of the charge-bearing carbanion. The greater the s-character of the charge-bearing atom, the more stable the anion.

Organometallic reagents like butyllithium (hexameric cluster, [BuLi]6) or methylmagnesium bromide (ether complex, MeMgBr(OEt)2) are often referred to as "carbanions," at least in a retrosynthetic sense. However, they are really clusters or complexes containing a polar covalent bond, though with electron density heavily polarized toward the carbon atom. Methyl anion and its chemistry have been observed in the gas phase. In the condensed phase, however, only carbanions that are sufficiently stabilized electronically or sterically have been isolated. In 1984 Olmstead and Power presented the lithium crown ether salt of the triphenylmethanide carbanion from triphenylmethane, n-butyllithium and 12-crown-4 (which forms a stable complex with lithium cations) at low temperatures:


...
Wikipedia

...