Cauchy's functional equation is the functional equation
Solutions to this are called additive functions. Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely for any rational constant . Over the real numbers, , now with an arbitrary real constant, is likewise a family of solutions; however there can exist other solutions that are extremely complicated. However, any of a number of regularity conditions, some of them quite weak, will preclude the existence of these pathological solutions. For example, an additive function is linear if: