*** Welcome to piglix ***

Centered octahedral number


A centered octahedral number or Haüy octahedral number is a figurate number that counts the number of points of a three-dimensional integer lattice that lie inside an octahedron centered at the origin. The same numbers are special cases of the Delannoy numbers, which count certain two-dimensional lattice paths. The Haüy octahedral numbers are named after René Just Haüy.

The name "Haüy octahedral number" comes from the work of René Just Haüy, a French mineralogist active in the late 18th and early 19th centuries. His "Haüy construction" approximates an octahedron as a polycube, formed by accreting concentric layers of cubes onto a central cube. The centered octahedral numbers count the number of cubes used by this construction. Haüy proposed this construction, and several related constructions of other polyhedra, as a model for the structure of crystalline minerals.

The number of three-dimensional lattice points within n steps of the origin is given by the formula

The first few of these numbers (for n = 0, 1, 2, ...) are

The generating function of the centered octahedral numbers is

The centered octahedral numbers obey the recurrence relation

They may also be computed as the sums of pairs of consecutive octahedral numbers.

The octahedron in the three-dimensional integer lattice, whose number of lattice points is counted by the centered octahedral number, is a metric ball for three-dimensional taxicab geometry, a geometry in which distance is measured by the sum of the coordinatewise distances rather than by Euclidean distance. For this reason, Luther & Mertens (2011) call the centered octahedral numbers "the volume of the crystal ball".


...
Wikipedia

...