*** Welcome to piglix ***

Chaetomium globosum

Chaetomium globosum
Chaetomium globosum.jpg
Fruiting bodies of Chaetomium globosum
Scientific classification
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Sordariales
Family: Chaetomiaceae
Genus: Chaetomium
Species: C. globosum
Binomial name
Chaetomium globosum
Kunze (1817)

Chaetomium globosum is a well-known mesophilic member of the Chaetomiaceae family of molds. It is a saprophytic fungus that primarily resides on plants, soil, straw, and dung. Endophytic C. globosum assists in cellulose decomposition of plant cells. They are found in habitats ranging from forest plants to mountain soils across various biomes.C. globosum colonies can also be found indoors and on wooden products.

C. globosum are human allergens and opportunistic agents of ungual mycosis and neurological infections. However such illnesses occur at low rates.

Like most Chaetomium species, C. globosum decomposes plant cells using hyphal cellulase activity. Even though they are known to cause soft rot rather than brown rot, C. globosum plant decomposition leaves behind lignin residues. They can decay a variety of wood types such as aspen and pine and even change the colour of paper and books. The cellulase activity of C. globosum functions best at temperatures ranging from 25-32 degrees Celsius and is stimulated by nitrogen and biotin. Cellulase is inhibited by ethyl malonate.

Like many fungal species, C. globosum obtains their energy from carbon sources such as glucose, mannitol and fructose.Fructose is usually digested outside the hyphae using fructokinase activity, whereas glucose enters the cell undigested for cellular metabolism. Even though glucose is the most preferred carbon source, C. globosum mycelium growth occurs at a higher rate when treated with acetate rather than glucose. Carbohydrates can also be stored within the fungus as glycogen and trehalose energy reserves.

Homothallic C.globosum sexual sporulation produces flat lemon-shaped ascospores within clavate ascomata. The appearance of C.globosum fruiting bodies are similar to the pycnidia of the Pyrenochaeta genus. The ascomata optimally fructify at temperatures ranging from 18-20 degrees Celsius and develop asci with 8 ascospores each. Additional conditions such as neutral pH, mild levels of carbon dioxide, the presence of calcium ions, and soluble sugar media also assist in the development of fruiting bodies. The soluble sugar media consists of glucose, maltose, sucrose, and cellulose.


...
Wikipedia

...