In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.
A claw is another name for the complete bipartite graph K1,3 (that is, a star graph with three edges, three leaves, and one central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Claw-free graphs were initially studied as a generalization of line graphs, and gained additional motivation through three key discoveries about them: the fact that all claw-free connected graphs of even order have perfect matchings, the discovery of polynomial time algorithms for finding maximum independent sets in claw-free graphs, and the characterization of claw-free perfect graphs. They are the subject of hundreds of mathematical research papers and several surveys.
It is straightforward to verify that a given graph with n vertices and m edges is claw-free in time O(n4), by testing each 4-tuple of vertices to determine whether they induce a claw. With more efficiency, and greater complication, one can test whether a graph is claw-free by checking, for each vertex of the graph, that the complement graph of its neighbors does not contain a triangle. A graph contains a triangle if and only if the cube of its adjacency matrix contains a nonzero diagonal element, so finding a triangle may be performed in the same asymptotic time bound as n × n matrix multiplication. Therefore, using the Coppersmith–Winograd algorithm, the total time for this claw-free recognition algorithm would be O(n3.376).