*** Welcome to piglix ***

Coherent turbulent structures


Turbulent flows are complex multi-scale and chaotic motions that need to be classified into more elementary components, referred to coherent turbulent structures. Such a structure must have temporal coherence, i.e. it must persist in its form for long enough periods that the methods of time-averaged statistics can be applied. Coherent structures are typically studied on very large scales, but can be broken down into more elementary structures with coherent properties of their own, such examples include hairpin vortices. Hairpins and coherent structures have been studied and noticed in data since the 1930s, and have been since cited in thousands of scientific papers and reviews.

Flow visualization experiments, using smoke and dye as tracers, have been historically used to simulate coherent structures and verify theories, but computer models are now the dominant tools widely used in the field to verify and understand the formation, evolution, and other properties of such structures. The kinematic properties of these motions include size, scale, shape, vorticity, energy, and the dynamic properties govern the way coherent structures grow, evolve, and decay. Most coherent structures are studied only within the confined forms of simple wall turbulence, which approximates the coherence to be steady, fully developed, incompressible, and with a zero pressure gradient in the boundary layer. Although such approximations depart from reality, they contain sufficient parameters needed to understand turbulent coherent structures in a highly conceptual degree.

The presence of organized motions and structures in turbulent shear flows was apparent for a long time, and has been additionally implied by mixing length hypothesis even before the concept was explicitly stated in literature. There were also early correlation data found by measuring jets and turbulent wakes, particularly by Corrsin and Roshko. Hama's hydrogen bubble technique, which used flow visualization to observe the structures, received wide spread attention and many researchers followed up including Kline. Flow visualization is a laboratory experimental technique that is used to visualize and understand the structures of turbulent shear flows.

With a much better understanding of coherent structures, it is now possible to discover and recognize many coherent structures in previous flow-visualization pictures collected of various turbulent flows taken decades ago. Computer simulations are now being the dominant tool for understanding and visualizing coherent flow structures. The ability to compute the necessary time-dependent Navier-Stokes equations produces graphic presentations at a much more sophisticated level, and can additionally be visualized at different planes and resolutions, exceeding the expected sizes and speeds previously generated in laboratory experiments. However, controlled flow visualization experiments are still necessary to direct, develop, and validate the numerical simulations now dominant in the field.


...
Wikipedia

...