A cold seep (sometimes called a cold vent) is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. Cold seeps constitute a biome supporting several endemic species.
Cold seeps develop unique topography over time, where reactions between methane and seawater create carbonate rock formations and reefs. These reactions may also be dependent on bacterial activity. Ikaite, a hydrous calcium carbonate, can be associated with oxidizing methane at cold seeps.
Types of cold seeps can be distinguished according to the depth, as shallow cold seeps and deep cold seeps. Cold seeps can also be distinguished in detail, as follows:
Cold seeps occur over fissures on the seafloor caused by tectonic activity. Oil and methane "seep" out of those fissures, get diffused by sediment, and emerge over an area several hundred meters wide.
Methane (CH
4) is the main component of what we commonly refer to as natural gas. But in addition to being an important energy source for humans, methane also forms the basis of a cold seep ecosystem. Cold seep biota below 200 m typically exhibit much greater systematic specialization and reliance on chemoautotrophy than those from shelf depths. Deep-sea seeps sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna.
Biological research in cold seeps and hydrothermal vents has been mostly focused on the microbiology and the prominent macro-invertebrates thriving on chemosynthetic microorganisms. Much less research has been done on the smaller benthic fraction at the size of the meiofauna (<1 mm).