*** Welcome to piglix ***

Conditional expectation


In probability theory, the conditional expectation of a random variable is another random variable equal to the average of the former over each possible "condition". In the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space. This definition is then generalized to any probability space using measure theory.

Conditional expectation is also known as conditional expected value or conditional mean.

In modern probability theory the concept of conditional probability is defined in terms of conditional expectation.

The concept of conditional expectation can be nicely illustrated through the following example. Suppose we have daily rainfall data (mm of rain each day) collected by a weather station on every day of the ten year period from Jan 1, 1990 to Dec 31, 1999. The conditional expectation of daily rainfall knowing the month of the year is the average of daily rainfall over all days of the ten year period that fall in a given month. These data then may be considered either as a function of each day (so for example its value for Mar 3, 1992, would be the sum of daily rainfalls on all days that are in the month of March during the ten years, divided by the number of these days, which is 310) or as a function of just the month (so for example the value for March would be equal to the value of the previous example).

It is important to note the following.

The related concept of conditional probability dates back at least to Laplace who calculated conditional distributions. It was Andrey Kolmogorov who in 1933 formalized it using the Radon–Nikodym theorem. In works of Paul Halmos and Joseph L. Doob from 1953, conditional expectation was generalized to its modern definition using sub-sigma-algebras.


...
Wikipedia

...