*** Welcome to piglix ***

Conformational proofreading


Conformational proofreading (CPR) or Conformational selection is a general mechanism of molecular recognition systems in which introducing a structural mismatch between a molecular recognizer and its target, or an energetic barrier, enhances the recognition specificity and quality. Conformational proofreading does not require the consumption of energy and may therefore be used in any molecular recognition system. CPR is especially useful in scenarios where the recognizer has to select the appropriate target among many similar competitors.

Molecular recognition takes place in a noisy, crowded biological environment and the recognizer often has to cope with the task of selecting its target among a variety of similar competitors. For example, the ribosome has to select the correct tRNA that matches the mRNA codon among many structurally similar tRNAs. If the recognizer and its correct target match perfectly like a lock and a key, then the binding probability will be high since no deformation is required upon binding. At the same time, the recognizer might also bind to a competitor with a similar structure with high probability. Introducing a structural mismatch between the recognizer (lock) and the key reduces the binding probability to the correct target but reduces even more the binding probability to a similar wrong target and thus improves the specificity. Yet, introducing too much deformation drastically reduces binding probability to the correct target. Therefore, the optimal balance between maximizing the correct binding probability and minimizing the incorrect binding probability is achieved when the recognizer is slightly off target. This suggests that conformational changes during molecular recognition processes, such as the induced fit mechanism, are advantageous for enhancing the specificity of recognition .

The mechanism of conformational proofreading (CPR) is utilized in the system of homologous recombination to discern between similar DNA sequences.Homologous recombination facilitates the exchange of genetic material between homologous DNA molecules. This crucial process requires detecting a specific homologous DNA sequence within a huge variety of heterologous sequences. The detection is mediated by RecA in E. coli, or members of its superfamily in other organisms. RecA first polymerizes along a stretch of single-stranded DNA, and then this protein-DNA filament searches for homology along double-stranded DNA. In the RecA-DNA filament, the distance between bases increases significantly with respect to the bare 3.4 Å in the double-strand (by 50% on average ). This sets a significant energetic barrier on the search, since the double-stranded DNA has to stretch by the same magnitude to check for homology. By formulating the DNA recognition process as a signal detection problem, it was shown that the experimentally observed RecA-induced DNA deformation and the binding energetics are fine-tuned to ensure optimal sequence detection. The amount of deformation is such that binding to homologous DNA sequences only slightly decreases, while binding to wrong sequences decreases significantly. This is exactly the conformational proofreading (CPR) mechanism.


...
Wikipedia

...