*** Welcome to piglix ***

Cylinder set


In mathematics, a cylinder set is the natural open set of a product topology. Cylinder sets are particularly useful in providing the base of the natural topology of the product of a countable number of copies of a set. If V is a finite set, then each element of V can be represented by a letter, and the countable product can be represented by the collection of strings of letters.

Consider the cartesian product of topological spaces , indexed by some index . The canonical projection is the function that maps every element of the product to its component. Then, given any open set , the preimage is called an open cylinder. The intersection of a finite number of open cylinders is a cylinder set. The collection of open cylinders form a subbase of the product topology on ; the collection of all cylinder sets thus form a basis.


...
Wikipedia

...