The decisional Diffie–Hellman (DDH) assumption is a computational hardness assumption about a certain problem involving discrete logarithms in cyclic groups. It is used as the basis to prove the security of many cryptographic protocols, most notably the ElGamal and Cramer–Shoup cryptosystems.
Consider a (multiplicative) cyclic group of order , and with generator . The DDH assumption states that, given and for uniformly and independently chosen , the value "looks like" a random element in .