*** Welcome to piglix ***

Dichlorosilane

Dichlorosilane
Stereo, skeletal formula of dichlorosilane with some explicit hydrogens added
Ball and stick model of dichlorosilane
Spacefill model of dichlorosilane
Names
IUPAC name
Dichlorosilane
Other names
Silicic dichloride dihydride
Identifiers
4109-96-0 YesY
3D model (Jmol) Interactive image
Abbreviations DCS
ChemSpider 55266 YesY
ECHA InfoCard 100.021.717
EC Number 223-888-3
MeSH dichlorosilane
PubChem 61330
RTECS number VV3050000
UN number 2189
Properties
SiH
2
Cl
2
Molar mass 101.007 g mol−1
Appearance Colourless gas
Density 1.22 g cm−3
Melting point −122 °C (−188 °F; 151 K)
Boiling point 8 °C; 46 °F; 281 K at 101 kPa
Reacts
Vapor pressure 167.2 kPa (at 20 °C)
Thermochemistry
286.72 J K−1 mol−1
−320.49 kJ mol−1
Hazards
Safety data sheet inchem.org
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H220, H250, H280, H314, H330
P210, P261, P305+351+338, P310, P410+403
Extremely Flammable F+ Very Toxic T+
R-phrases R12, R14, R26, R35
S-phrases S26, S36/37/39, S45, S53, S60
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g., phosphorus Special hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
Flash point −37 °C (−35 °F; 236 K)
55 °C (131 °F; 328 K)
Explosive limits 4.1–99%
Related compounds
Related dichlorosilanes
Trichlorosilane

Silicon tetrachloride

Related compounds
Dichloromethane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Silicon tetrachloride

Dichlorosilane, or DCS as it is commonly known, is a chemical compound with the formula H2SiCl2. In its major use, it is mixed with ammonia (NH3) in LPCVD chambers to grow silicon nitride in semiconductor processing. A higher concentration of DCS:NH3 (i.e. 16:1), usually results in lower stress nitride films.

Dichlorosilane was originally prepared in 1919 by the gas-phase reaction of monosilane, SiH4, with hydrogen chloride, HCl, and then reported by Stock and Somieski. It was found that in the gas phase, dichlorosilane will react with water vapor to give a gaseous monomeric prosiloxane, H2SiO. Prosiloxane polymerizes rapidly in the liquid phase and slowly in the gas phase, which results in liquid and solid polysiloxanes [H2SiO]n. The liquid portion of the product, which is collected via vacuum distillation, becomes viscous and gelled at room temperature. Hydrolysis was done on a solution of H2SiCl2 in benzene by brief contact with water, and the molecular weight was determined to be consistent with an average composition of [H2SiO]6. Through analytical and molecular weight determinations, n was decided to be between 6 and 7. Then, through more experimentation with the product, it was determined that n increases as time increases. After being in contact with the aqueous hydrolysis medium for a longer period of time, a polymer, [HSi(OH)O]n, was produced. There was limited availability of dichlorosilane until the silicone industry grew.

Most dichlorosilane results as a byproduct of the reaction of HCl with silicon, a reaction intended to give trichlorosilane.

Disproportionation of trichlorosilane is the preferred route.

Stock and Somieski completed the hydrolysis of dichlorosilane by putting the solution of H2SiCl2 in benzene in brief contact with a large excess of water. A large-scale hydrolysis was done in a mixed ether/alkane solvent system at 0 °C, which gave a mixture of volatile and nonvolatile [H2SiO]n. Fischer and Kiegsmann attempted the hydrolysis of dichlorosilane in hexane, using NiCl2⋅6H2O as the water source, but the system failed. They did, however, complete the hydrolysis using dilute Et2O/CCl4 at -10 °C. The purpose of completing the hydrolysis of dichlorosilane is to collect the concentrated hydrolysis products, distill the solution, and retrieve a solution of [H2SiO]n oligomers in dichloromethane. These methods were used to obtain cyclic polysiloxanes.


...
Wikipedia

...