*** Welcome to piglix ***

Dihydroorotate dehydrogenase

Dihydroorotate oxidase
Identifiers
EC number 1.3.3.1
CAS number 9029-03-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
1f76.gif
Dihydroorotate dehydrogenase from E. coli
Identifiers
Symbol DHO_dh
Pfam PF01180
InterPro IPR001295
PROSITE PDOC00708
SCOP 1dor
SUPERFAMILY 1dor
OPM superfamily 59
OPM protein 1uum
CDD cd02810
Human dihydroorotate dehydrogenase
Identifiers
Symbol DHODH
Entrez 1723
HUGO 2867
OMIM 126064
PDB 1D3G
RefSeq NM_001361
UniProt Q02127
Other data
EC number 1.3.3.1
Locus Chr. 16 q22

Dihydroorotate dehydrogenase (DHODH) is an enzyme that in humans is encoded by the DHODH gene on chromosome 16. The protein encoded by this gene catalyzes the fourth enzymatic step, the ubiquinone-mediated oxidation of dihydroorotate to orotate, in de novo pyrimidine biosynthesis. This protein is a protein located on the outer surface of the (IMM).Inhibitors of this enzyme are used to treat autoimmune diseases such as rheumatoid arthritis.

DHODH can vary in cofactor content, oligomeric state, subcellular localization, and membrane association. An overall sequence alignment of these DHODH variants presents two classes of DHODHs: the cytosolic Class 1 and the membrane-bound Class 2. In Class 1 DHODH, a basic cysteine residue catalyzes the oxidation reaction, whereas in Class 2, the serine serves this catalytic function. Structurally, Class 1 DHODHs can also be divided into two subclasses, one of which forms homodimers and uses fumarate as its electron acceptor, and the other which forms heterotetramers and uses NAD+ as its electron acceptor. This second subclass contains an addition subunit (PyrK) containing an iron-sulfur cluster and a flavin adenine dinucleotide (FAD). Meanwhile, Class 2 DHODHs use coenzyme Q/ubiquinones for their oxidant. In higher eukaryotes, this class of DHODH contains an N-terminal bipartite signal comprising a cationic, amphipathic mitochondrial targeting sequence of about 30 residues and a hydrophobic transmembrane sequence. The targeting sequence is responsible for this protein’s localization to the IMM, possibly from recruiting the import apparatus and mediating ΔΨ-driven transport across the inner and , while the transmembrane sequence is essential for its insertion into the IMM. This sequence is adjacent to a pair of α-helices, α1 and α2, which are connected by a short loop. Together, this pair forms a hydrophobic funnel that is suggested to serve as the insertion site for ubiquinone, in conjunction with the FMN binding cavity at the C-terminal. The two terminal domains are directly connected by an extended loop. The C-terminal domain is the larger of the two and folds into a conserved α/β-barrel structure with a core of eight parallel β-strands surrounded by eight α helices.


...
Wikipedia

...