|
|||
Names | |||
---|---|---|---|
IUPAC name
Diiron nonacarbonyl, tri-μ-carbonyl-bis(tricarbonyliron)(Fe—Fe)
|
|||
Other names
Iron enneacarbonyl
|
|||
Identifiers | |||
15321-51-4 | |||
3D model (Jmol) | Interactive image | ||
ChemSpider | 4807522 | ||
ECHA InfoCard | 100.035.765 | ||
|
|||
|
|||
Properties | |||
Fe2C9O9 | |||
Molar mass | 363.78 g/mol | ||
Appearance | orange crystals | ||
Density | 2.08 g/cm3 | ||
Melting point | decomposes at 100 °C | ||
Boiling point | decomposes | ||
insoluble | |||
Structure | |||
0 D | |||
Hazards | |||
Main hazards | Toxic | ||
Related compounds | |||
Related iron carbonyls
|
Iron pentacarbonyl Triiron dodecacarbonyl |
||
Related compounds
|
Dimanganese decacarbonyl Dicobalt octacarbonyl |
||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
what is ?) | (|||
Infobox references | |||
Diiron nonacarbonyl is an inorganic compound with the formula Fe2(CO)9. This metal carbonyl is an important reagent in organometallic chemistry and of occasional use in organic synthesis. It is a more reactive source of Fe(0) than Fe(CO)5 and less dangerous to handle because it is nonvolatile. This micaceous orange solid is virtually insoluble in all common solvents.
Following the original method, photolysis of an acetic acid solution of Fe(CO)5 produces Fe2(CO)9 in good yield:
Fe2(CO)9 consists of a pair of Fe(CO)3 centers linked by three bridging CO ligands. Although older textbooks show an Fe-Fe bond consistent with the 18 electron rule (8 valence electrons from Fe, two each from the terminal carbonyls, one each from the bridging carbonyls and one from the other Fe atom in the metal-metal bond), theoretical analyses have consistently indicated the absence of a direct Fe-Fe bond: this latter model proposes an Fe-C-Fe three-center-two-electron "banana bond" for one of the bridging carbonyls. The minor isomer has been crystallized together with C60. The iron atoms are equivalent and octahedral molecular geometry. Elucidation of the structure of Fe2(CO)9 proved to be challenging because its low solubility inhibits growth of crystals. The Mößbauer spectrum reveals one quadrupole doublet, consistent with the D3h-symmetric structure.
Fe2(CO)9 is a precursor to compounds of the type Fe(CO)4L and Fe(CO)3(diene). Such syntheses are typically conducted in THF solution. In these conversions, it is proposed that small amounts of Fe2(CO)9 dissolve according to the following reaction:
Cyclobutadieneiron tricarbonyl is prepared using Fe2(CO)9. Fe2(CO)9 has also been employed in the synthesis of cyclopentadienones via a net [2+3]-cycloaddition from dibromoketones, known as the Noyori [3+2] reaction.