In computer science, dynamic dispatch is the process of selecting which implementation of a polymorphic operation (method or function) to call at run time. It is commonly employed in, and considered a prime characteristic of, object-oriented programming (OOP) languages and systems.
Object-oriented systems model a problem as a set of interacting objects that enact operations referred to by name. Polymorphism is the phenomenon wherein somewhat interchangeable objects each expose an operation of the same name but possibly differing in behavior. As an example, a File object and a Database object both have a StoreRecord method that can be used to write a personnel record to storage. Their implementations differ. A program holds a reference to an object which may be either a File object or a Database object. Which it is may have been determined by a run-time setting, and at this stage, the program may not know or care which. When the program calls StoreRecord on the object, something needs to decide which behavior gets enacted. If one thinks of OOP as sending messages to objects, then in this example the program sends a StoreRecord message to an object of unknown type, leaving it to the run-time support system to dispatch the message to the right object. The object enacts whichever behavior it implements.
Dynamic dispatch contrasts with static dispatch, in which the implementation of a polymorphic operation is selected at compile-time. The purpose of dynamic dispatch is to support cases where the appropriate implementation of a polymorphic operation cannot be determined at compile time because it depends on the runtime type of one or more actual parameters to the operation.
Dynamic dispatch is different from late binding (also known as dynamic binding). In the context of selecting an operation, binding associates a name to an operation. Dispatching chooses an implementation for the operation after you have decided which operation a name refers to. With dynamic dispatch, the name may be bound to a polymorphic operation at compile time, but the implementation not be chosen until run time. While dynamic dispatch does not imply late binding, late binding does imply dynamic dispatching since the binding is what determines the set of available dispatches.