Effects of air pressure and water pressure | |
---|---|
Classification and external resources | |
Specialty | emergency medicine |
ICD-10 | T70 |
ICD-9-CM | 993 |
DiseasesDB | 3491 |
eMedicine | emerg/154 |
Dysbarism refers to medical conditions resulting from changes in ambient pressure. Various activities are associated with pressure changes. underwater diving is the most frequently cited example, but pressure changes also affect people who work in other pressurized environments (for example, caisson workers), and people who move between different altitudes.
Ambient pressure is the pressure in the water around the diver (or the air, with caisson workers etc.). As a diver descends, the ambient pressure increases. At 10 meters (33 feet) in salt water, it is twice the normal pressure on land at sea level. At 40 meters (the recommended safety limit for recreational diving) it is 5 times the pressure at sea level.
Pressure decreases as we rise above sea level, but less dramatically. At 3000 feet altitude (almost 1000 meters), the ambient pressure is almost 90% of sea level pressure. Ambient pressure does not drop to 50% of sea level pressure until 20,000 feet or 6,000 meters altitude.
This is not of practical importance, because the body is mostly composed of barely compressible materials such as water. People often wonder whether scuba divers feel their body being crushed by the pressure, but divers would have to reach depths of thousands of feet before their flesh began to suffer significant compression.
Gas is very compressible. Humans have many air spaces: sinuses, middle ears, gas in our bowels, cavities in our teeth, and largest of all, our lungs. On land in our daily lives, the pressure in our air spaces is usually exactly the same as the pressure outside, because our air spaces are connected to the outside world. If there was a pressure difference between the outside world and one of our air spaces, then we experience painful pressure on the walls of that air space, as air pushes from the higher-pressure side to the lower-pressure side. This is why we sometimes get painful ears on air trips.