*** Welcome to piglix ***

Energy expenditure


In biology, energy homeostasis, or the homeostatic control of energy balance, is a biological process that involves the coordinated homeostatic regulation of food intake (energy inflow) and energy expenditure (energy outflow). The human brain, particularly the hypothalamus, plays a central role in regulating energy homeostasis and generating the sense of hunger by integrating a number of biochemical signals that transmit information about energy balance. Fifty percent of the energy from glucose metabolism is immediately converted to heat.

Energy homeostasis is an important aspect of bioenergetics.

In the US, biological energy is expressed using the energy unit Calorie with a capital C (i.e. a kilocalorie), which equals the energy needed to increase the temperature of 1 kilogram of water by 1 °C (about 4.18 kJ).

Energy balance, through biosynthetic reactions, can be measured with the following equation:

The first law of thermodynamics states that energy can be neither created nor destroyed. But energy can be converted from one form of energy to another. So, when a calorie of food energy is consumed, one of three particular effects occur within the body: a portion of that calorie may be stored as body fat, triglycerides, or glycogen, transferred to cells and converted to chemical energy in the form of adenosine triphosphate (ATP – a coenzyme) or related compounds, or dissipated as heat.

Energy intake is measured by the amount of calories consumed from food and fluids. Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior. Hunger is regulated in part by the action of certain peptide hormones and neuropeptides (e.g., insulin, leptin, ghrelin, and neuropeptide Y, among others) in the hypothalamus.


...
Wikipedia

...