*** Welcome to piglix ***

Extremal principles in non-equilibrium thermodynamics


Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches of physics. According to Kondepudi (2008), and to Grandy (2008), there is no general rule that provides an extremum principle that governs the evolution of a far-from-equilibrium system to a steady state. According to Glansdorff and Prigogine (1971, page 16), irreversible processes usually are not governed by global extremal principles because description of their evolution requires differential equations which are not self-adjoint, but local extremal principles can be used for local solutions. Lebon Jou and Casas-Vásquez (2008) state that "In non-equilibrium ... it is generally not possible to construct thermodynamic potentials depending on the whole set of variables". Šilhavý (1997) offers the opinion that "... the extremum principles of thermodynamics ... do not have any counterpart for [non-equilibrium] steady states (despite many claims in the literature)." It follows that any general extremal principle for a non-equilibrium problem will need to refer in some detail to the constraints that are specific for the structure of the system considered in the problem.

Apparent 'fluctuations', which appear to arise when initial conditions are inexactly specified, are the drivers of the formation of non-equilibrium dynamical structures. There is no special force of nature involved in the generation of such fluctuations. Exact specification of initial conditions would require statements of the positions and velocities of all particles in the system, obviously not a remotely practical possibility for a macroscopic system. This is the nature of thermodynamic fluctuations. They cannot be predicted in particular by the scientist, but they are determined by the laws of nature and they are the singular causes of the natural development of dynamical structure.

It is pointed out by W.T. Grandy Jr that entropy, though it may be defined for a non-equilibrium system, is when strictly considered, only a macroscopic quantity that refers to the whole system, and is not a dynamical variable and in general does not act as a local potential that describes local physical forces. Under special circumstances, however, one can metaphorically think as if the thermal variables behaved like local physical forces. The approximation that constitutes classical irreversible thermodynamics is built on this metaphoric thinking.

As indicated by the " " marks of Onsager (1931), such a metaphorical but not categorically mechanical force, the thermal "force", , 'drives' the conduction of heat. For this so-called "thermodynamic force", we can write


...
Wikipedia

...