Names | |
---|---|
Other names
Iron sulfide, ferrous sulfide, black iron sulfide, protosulphuret of iron
|
|
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.013.881 |
PubChem CID
|
|
|
|
|
|
Properties | |
FeS | |
Molar mass | 87.910 g/mol |
Appearance | Gray, sometimes in lumps or powder |
Density | 4.84 g/cm3 |
Melting point | 1,194 °C (2,181 °F; 1,467 K) |
negligible (insoluble) | |
Solubility | reacts in acid |
+1074·10−6 cm3/mol | |
Hazards | |
Main hazards | can be pyrophoric |
variable | |
Related compounds | |
Related compounds
|
Iron(II) oxide Iron disulfide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Iron(II) sulfide or ferrous sulfide (Br.E. sulphide) is one of a family chemical compounds and minerals with the approximate formula FeS. Iron sulfides are often iron-deficient non-stoichiometric. All are black, water-insoluble solids.
FeS can be obtained by the heating of iron and sulfur:
FeS adopts the nickel arsenide structure, featuring octahedral Fe centers and trigonal prismatic sulfide sites.
Iron sulfide reacts with hydrochloric acid, releasing hydrogen sulfide
In moist air, iron sulfides oxidize to hydrated ferrous sulfate.
Iron sulfides occur widely in nature in the form of iron–sulfur proteins.
As organic matter decays under low-oxygen (or hypoxic) conditions such as in swamps or dead zones of lakes and oceans, sulfate-reducing bacteria reduced sulfates present in the water, producing hydrogen sulfide. Some of the hydrogen sulfide will react with metal ions in the water or solid to produce metal sulfides, which are not water-soluble. These metal sulfides, such as iron(II) sulfide, are often black or brown, leading to the color of sludge.
Pyrrhotite is a waste product of the Desulfovibrio bacteria, a sulfate reducing bacteria.
When eggs are cooked for a long time, the yolk's surface may turn green. This color change is due to iron(II) sulfide, which forms as iron from the yolk reacts with hydrogen sulfide released from the egg white by the heat. This reaction occurs more rapidly in older eggs as the whites are more alkaline.