In mathematics, a foliation is a geometric tool for understanding manifolds. The leaves of a foliation consist of integrable subbundles of the tangent bundle. Foliating a manifold may split it up into pieces that interact simply. A foliation looks locally like a decomposition of the manifold as a union of parallel submanifolds of smaller dimension.
More formally, a dimension p foliation F of an n-dimensional manifold M is a covering by charts Ui together with maps
such that for overlapping pairs Ui, Uj the transition functions φij : Rn → Rn defined by
take the form
where x denotes the first n − p coordinates, and y denotes the last p co-ordinates. That is,
In the chart Ui, the stripes x = constant match up with the stripes on other charts Uj. Technically, these stripes are called plaques of the foliation. In each chart, the plaques are p dimensional submanifolds. These submanifolds piece together from chart to chart to form maximal connected injectively immersed submanifolds called the leaves of the foliation.
The notion of leaves allows for a more intuitive way of thinking about a foliation. A p-dimensional foliation of an n-manifold M may be thought of as simply a collection {Ma} of pairwise-disjoint, connected, immersed p-dimensional submanifolds (the leaves of the foliation) of M, such that for every point x in M, there is a chart with U homeomorphic to Rn containing x such that every leaf, Ma, meets U in either the empty set or a countable collection of subspaces whose images under in are p-dimensional affine subspaces whose first n − p coordinates are constant.