In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the (linear algebraic) properties of the Pauli matrices. Here, a few classes of such matrices are summarized.
Let Ejk be the matrix with 1 in the jk-th entry and 0 elsewhere. Consider the space of d×d complex matrices, ℂd×d, for a fixed d.
Define the following matrices,
The collection of matrices defined above without the identity matrix are called the generalized Gell-Mann matrices, in dimension d. The symbol ⊕ (utilized in the Cartan subalgebra above) means matrix direct sum.
The generalized Gell-Mann matrices are Hermitian and traceless by construction, just like the Pauli matrices. One can also check that they are orthogonal in the Hilbert–Schmidt inner product on ℂd×d. By dimension count, one sees that they span the vector space of d × d complex matrices, (d,ℂ). They then provide a Lie-algebra-generator basis acting on the fundamental representation of (d ).