*** Welcome to piglix ***

Genome engineering


Genome engineering refers to the strategies and techniques developed for the targeted, specific modification of the genetic information – or genome – of living organisms.

It represents a very active field of research because of the wide range of possible applications, particularly in the areas of human health - the correction of a gene carrying a harmful mutation, the production of therapeutic proteins, the elimination of persistent viral sequences - agricultural biotechnology - the development of new generations of genetically modified plants - and for the development of research tools - for example, to explore the function of a gene.

Early technologies developed to insert a gene into a living cell, such as transgenesis, are limited by the random nature of the insertion of the new sequence into the genome. The new gene is positioned blindly, and may inactivate or disturb the functioning of other genes or even cause severe unwanted effects; it may trigger a process of cancerization, for example. Furthermore, these technologies offer no degree of reproducibility, as there is no guarantee that the new sequence will be inserted at the same place in two different cells.

The major advantage of genome engineering, which uses more recent knowledge and technology, is that it enables a specific area of the DNA to be modified, thereby increasing the precision of the correction or insertion, preventing any cell toxicity and offering perfect reproducibility.

Genome engineering and synthetic genomics (designing artificial genomes) are currently among the most promising technologies in terms of applied biological research and industrial innovation.

Early approaches to genome engineering involved modifying genetic sequences using only homologous recombination. Using a homologous sequence located on another strand as a model can lead this natural DNA maintenance mechanism to repair a DNA strand. It is possible to induce homologous recombinations between a cellular DNA strand and an exogenous DNA strand inserted in the cell by researchers, using a vector such as the modified genome of a retrovirus. The recombination phenomenon is flexible enough for a certain level of change (addition, suppression or modification of a DNA portion) to be introduced to the targeted homologous area.


...
Wikipedia

...