*** Welcome to piglix ***

Goursat tetrahedron


In geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, the Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere.

A Goursat tetrahedron can be represented graphically by a tetrahedral graph, which is in a dual configuration of the fundamental domain tetrahedron. In the graph, each node represents a face (mirror) of the Goursat tetrahedron. Each edge is labeled by a rational value corresponding to the reflection order, being π/dihedral angle.

A 4-node Coxeter-Dynkin diagram represents this tetrahedral graphs with order-2 edges hidden. If many edges are order 2, the Coxeter group can be represented by a bracket notation.

Existence requires each of the 3-node subgraphs of this graph, (p q r), (p u s), (q t u), and (r s t), must correspond to a Schwarz triangle.

An extended symmetry of the Goursat tetrahedron is a semidirect product of the Coxeter group symmetry and the fundamental domain symmetry (the Goursat tetrahedron in these cases). Coxeter notation supports this symmetry as double-brackets like [Y[X]] means full Coxeter group symmetry [X], with Y as a symmetry of the Goursat tetrahedron. If Y is a pure reflective symmetry, the group will represent another Coxeter group of mirrors. If there is only one simple doubling symmetry, Y can be implicit like [[X]] with either reflectional or rotational symmetry depending on the context.


...
Wikipedia

...