*** Welcome to piglix ***

Gravitational tugging


A gravity tractor (GT) is a theoretical spacecraft that would deflect another object in space, typically a potentially hazardous asteroid that might impact Earth, without physically contacting it, using only its gravitational field to transmit the required impulse. The gravitational force of a nearby space vehicle, though minuscule, is able to alter the trajectory of a much larger asteroid if the vehicle spends enough time close to it; all that is required is that the vehicle thrust in a consistent direction relative to the asteroid's trajectory, and that neither the vehicle nor its expelled reaction mass come in direct contact with the asteroid. The tractor spacecraft could either hover near the object being deflected, or orbit it, directing its exhaust perpendicular to the plane of the orbit. The concept has two key advantages: namely that essentially nothing needs to be known about the mechanical composition and structure of the asteroid in advance; and that the relatively small amounts of force used enable extremely precise manipulation and determination of the asteroid's orbit around the sun. Whereas other methods of deflection would require the determination of the asteroid's exact center of mass, and considerable effort might be necessary to halt its spin or rotation, by using the tractor method these considerations are irrelevant.

A number of considerations arise concerning means for avoiding a devastating collision with an asteroidal object, should one be discovered on a trajectory that were determined to lead to Earth impact at some future date. One of the main challenges is how to transmit the impulse required (possibly quite large), to an asteroid of unknown mass, composition, and mechanical strength, without shattering it into fragments, some of which might be themselves dangerous to Earth if left in a collision orbit. The GT solves this problem by gently accelerating the object as a whole over an extended period of time, using the spacecraft's own mass and associated gravitational field to effect the necessary deflecting force. Because of the universality of gravitation, affecting as it does all mass alike, the asteroid would be accelerated almost uniformly as a whole, with only tidal forces (which should be extremely small) causing any stresses to its internal structure.


...
Wikipedia

...