The gravity of Earth, which is denoted by g, refers to the acceleration that Is imparted to objects due to the distribution of mass within the Earth. In SI units this acceleration is measured in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1). Near the Earth's surface, gravitational acceleration is approximately 9.8 m/s2, which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres (32 ft) per second every second. This quantity is sometimes referred to informally as little g (in contrast, the gravitational constant G is referred to as big G).
The precise strength of Earth's gravity varies depending on location. The nominal "average" value at the Earth's surface, known as standard gravity is, by definition, 9.80665 m/s2 (about 32.1740 ft/s2). This quantity is denoted variously as gn, ge (though this sometimes means the normal equatorial value on Earth, 9.78033 m/s2), g0, gee, or simply g (which is also used for the variable local value). The weight of an object on the Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = ma (force = mass × acceleration). Gravitational acceleration contributes to the total acceleration, but other factors, such as the rotation of the Earth, also contribute, and, therefore, affect the weight of the object.