*** Welcome to piglix ***

Grunsky's theorem


In mathematics, Grunsky's theorem, due to the German mathematician Helmut Grunsky, is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers. The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r ≤ tanh π/4. The largest r for which this is true is called the radius of starlikeness of the function.

Let f be a univalent holomorphic function on the unit disc D such that f(0) = 0. Then for all r ≤ tanh π/4, the image of the disc |z| < r is starlike with respect to 0, , i.e. it is invariant under multiplication by real numbers in (0,1).

If f(z) is univalent on D with f(0) = 0, then

Taking the real and imaginary parts of the logarithm, this implies the two inequalities

and

For fixed z, both these equalities are attained by suitable Koebe functions

where |w| = 1.

Grunsky (1932) originally proved these inequalities based on extremal techniques of Ludwig Bieberbach. Subsequent proofs, outlined in Goluzin (1939), relied on the Loewner equation. More elementary proofs were subsequently given based on Goluzin's inequalities, an equivalent form of Grunsky's inequalities (1939) for the Grunsky matrix.

For a univalent function g in z > 1 with an expansion

Goluzin's inequalities state that

where the zi are distinct points with |zi| > 1 and λi are arbitrary complex numbers.

Taking n = 2. with λ1 = – λ2 = λ, the inequality implies


...
Wikipedia

...