*** Welcome to piglix ***

HCFCs


A chlorofluorocarbon (CFC) is an organic compound that contains only carbon, chlorine, and fluorine, produced as volatile derivative of methane, ethane, and propane. They are also commonly known by the DuPont brand name Freon. The most common representative is dichlorodifluoromethane (R-12 or Freon-12). Many CFCs have been widely used as refrigerants, propellants (in aerosol applications), and solvents. Because CFCs contribute to ozone depletion in the upper atmosphere, the manufacture of such compounds has been phased out under the , and they are being replaced with other products such as hydrofluorocarbons (HFCs) (e.g., R-410A) and R-134a.

As in simpler alkanes, carbon in the CFCs bonds with tetrahedral symmetry. Because the fluorine and chlorine atoms differ greatly in size and effective charge from hydrogen and from each other, the methane-derived CFCs deviate from perfect tetrahedral symmetry.

The physical properties of CFCs and HCFCs are tunable by changes in the number and identity of the halogen atoms. In general they are volatile, but less so than their parent alkanes. The decreased volatility is attributed to the molecular polarity induced by the halides, which induces intermolecular interactions. Thus, methane boils at −161 °C whereas the fluoromethanes boil between −51.7 (CF2H2) and −128 °C (CF4). The CFCs have still higher boiling points because the chloride is even more polarizable than fluoride. Because of their polarity, the CFCs are useful solvents, and their boiling points make them suitable as refrigerants. The CFCs are far less flammable than methane, in part because they contain fewer C-H bonds and in part because, in the case of the chlorides and bromides, the released halides quench the free radicals that sustain flames.


...
Wikipedia

...