In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer n ≥ 1. That is,
and
Therefore X is a connected space, with one non-zero higher Betti number: bn. It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem).
A rational homology sphere is defined similarly but using homology with rational coefficients.
The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere. Being a spherical 3-manifold, it is the only homology 3-sphere (besides the 3-sphere itself) with a finite fundamental group. Its fundamental group is known as the binary icosahedral group and has order 120. This shows the Poincaré conjecture cannot be stated in homology terms alone.
A simple construction of this space begins with a dodecahedron. Each face of the dodecahedron is identified with its opposite face, using the minimal clockwise twist to line up the faces. Gluing each pair of opposite faces together using this identification yields a closed 3-manifold. (See Seifert–Weber space for a similar construction, using more "twist", that results in a hyperbolic 3-manifold.)