*** Welcome to piglix ***

Hydrogen iodide

Hydrogen iodide
Hydrogen iodide
Hydrogen iodide
Names
IUPAC name
Iodane
Other names
Hydroiodic acid (aqueous solution)
Iodine hydride
Identifiers
10034-85-2 YesY
3D model (Jmol) Interactive image
ChemSpider 23224 YesY
PubChem 16109203
RTECS number MW3760000
UNII 694C0EFT9Q YesY
Properties
HI
Molar mass 127.904 g/mol
Appearance Colorless gas
Density 2.85 g/mL (−47 °C)
Melting point −50.80 °C (−59.44 °F; 222.35 K)
Boiling point −35.36 °C (−31.65 °F; 237.79 K)
approximately 245 g/100 ml
Acidity (pKa) −10 (in water, estimate); -9.5 (±1.0)

2.8 (in acetonitrile)

Structure
Terminus
0.38 D
Hazards
Main hazards Toxic, corrosive, Harmful and Irritant
Safety data sheet See: data page
hydrogen iodide
hydroiodic acid
R-phrases R20, R21, R22, R35
S-phrases S7, S9, S26, S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazard COR: Corrosive; strong acid or base. E.g., sulfuric acid, potassium hydroxideNFPA 704 four-colored diamond
Flash point Non-flammable
Related compounds
Other anions
Hydrogen fluoride
Hydrogen chloride
Hydrogen bromide
Hydrogen astatide
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

2.8 (in acetonitrile)

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of said gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

HI is a colorless gas that reacts with oxygen to give water and iodine. With moist air, HI gives a mist (or fumes) of hydroiodic acid. It is exceptionally soluble in water, giving hydroiodic acid. One liter of water will dissolve 425 liters of HI, the most concentrated solution having only four water molecules per molecule of HI.

Hydroiodic acid is not pure hydrogen iodide, but a mixture containing it. Commercial "concentrated" hydroiodic acid usually contains 48–57% HI by mass. The solution forms an azeotrope boiling at 127 °C with 57% HI, 43% water. The high acidity is caused by the dispersal of the ionic charge over the anion. The iodide ion is much larger than the other common halides, which results in the negative charge being dispersed over a large space. By contrast, a chloride ion is much smaller, meaning its negative charge is more concentrated, leading to a stronger interaction between the proton and the chloride ion. This weaker H+···I interaction in HI facilitates dissociation of the proton from the anion and is the reason HI is the strongest acid of the hydrohalides.

The industrial preparation of HI involves the reaction of I2 with hydrazine, which also yields nitrogen gas:


...
Wikipedia

...