*** Welcome to piglix ***

Hypoxia-inducible factor

hypoxia-inducible factor 1, alpha subunit
Identifiers
Symbol HIF1A
Entrez 3091
HUGO 4910
OMIM 603348
RefSeq NM_001530
UniProt Q16665
Other data
Locus Chr. 14 q21-q24
aryl hydrocarbon receptor nuclear translocator
Identifiers
Symbol ARNT
Alt. symbols HIF1B, bHLHe2
Entrez 405
HUGO 700
OMIM 126110
RefSeq NM_001668
UniProt P27540
Other data
Locus Chr. 1 q21
endothelial PAS domain protein 1
Identifiers
Symbol EPAS1
Alt. symbols HIF2A, MOP2, PASD2, HLF
Entrez 2034
HUGO 3374
OMIM 603349
RefSeq NM_001430
UniProt Q99814
Other data
Locus Chr. 2 p21-p16
aryl-hydrocarbon receptor nuclear translocator 2
Identifiers
Symbol ARNT2
Alt. symbols HIF2B, KIAA0307, bHLHe1
Entrez 9915
HUGO 16876
OMIM 606036
RefSeq NM_014862
UniProt Q9HBZ2
Other data
Locus Chr. 1 q24
hypoxia-inducible factor 3, alpha subunit
Identifiers
Symbol HIF3A
Entrez 64344
HUGO 15825
OMIM 609976
RefSeq NM_152794
UniProt Q9Y2N7
Other data
Locus Chr. 19 q13
Hypoxia-inducible factor-1
PDB 1lm8 EBI.jpg
Structure of a HIF-1a-pVHL-ElonginB-ElonginC Complex.
Identifiers
Symbol HIF-1
Pfam PF11413
HIF-1 alpha C terminal transactivation domain
PDB 1l3e EBI.jpg
Structure of hypoxia-inducible factor-1 alpha subunit.
Identifiers
Symbol HIF-1a_CTAD
Pfam PF08778
InterPro IPR014887
SCOP 1l3e
SUPERFAMILY 1l3e

Hypoxia-inducible factors (HIFs) are transcription factors that respond to decreases in available oxygen in the cellular environment, or hypoxia.

Most, if not all, oxygen-breathing species express the highly conserved transcriptional complex HIF-1, which is a heterodimer composed of an alpha and a beta subunit, the latter being a constitutively-expressed aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1 belongs to the PER-ARNT-SIM (PAS) subfamily of the basic helix-loop-helix (bHLH) family of transcription factors. The alpha and beta subunit are similar in structure and both contain the following domains:

The following are members of the human HIF family:

The HIF signaling cascade mediates the effects of hypoxia, the state of low oxygen concentration, on the cell. Hypoxia often keeps cells from differentiating. However, hypoxia promotes the formation of blood vessels, and is important for the formation of a vascular system in embryos, and cancer tumors. The hypoxia in wounds also promotes the migration of keratinocytes and the restoration of the epithelium.

In general, HIFs are vital to development. In mammals, deletion of the HIF-1 genes results in perinatal death. HIF-1 has been shown to be vital to chondrocyte survival, allowing the cells to adapt to low-oxygen conditions within the growth plates of bones. HIF plays a central role in the regulation of human metabolism.

The alpha subunits of HIF are hydroxylated at conserved proline residues by HIF prolyl-hydroxylases, allowing their recognition and ubiquitination by the VHL E3 ubiquitin ligase, which labels them for rapid degradation by the proteasome. This occurs only in normoxic conditions. In hypoxic conditions, HIF prolyl-hydroxylase is inhibited, since it utilizes oxygen as a cosubstrate.


...
Wikipedia

...