*** Welcome to piglix ***

Infinite skew polyhedron


In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.

Skew apeirohedra have also been called polyhedral sponges.

Many are directly related to a convex uniform honeycomb, being the polygonal surface of a honeycomb with some of the cells removed. Characteristically, an infinite skew polyhedron divides 3-dimensional space into two halves. If one half is thought of as solid the figure is sometimes called a partial honeycomb.

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra (apeirohedra).

Coxeter and Petrie found three of these that filled 3-space:

There also exist chiral skew apeirohedra of types {4,6}, {6,4}, and {6,6}. These skew apeirohedra are vertex-transitive, edge-transitive, and face-transitive, but not mirror symmetric (Schulte 2004).

Beyond Euclidean 3-space, in 1967 C. W. L. Garner published a set of 31 regular skew polyhedra in hyperbolic 3-space.

J. Richard Gott in 1967 published a larger set of seven infinite skew polyhedra which he called regular pseudopolyhedrons, including the three from Coxeter as {4,6}, {6,4}, and {6,6} and four new ones: {5,5}, {4,5}, {3,8}, {3,10}.

Gott relaxed the definition of regularity to allow his new figures. Where Coxeter and Petrie had required that the vertices be symmetrical, Gott required only that they be congruent. Thus, Gott's new examples are not regular by Coxeter and Petrie's definition.


...
Wikipedia

...