*** Welcome to piglix ***

Infrared chemiluminescence


Chemiluminescence (also chemoluminescence) is the emission of light (luminescence), as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate ,

For example, if [A] is luminol and [B] is hydrogen peroxide in the presence of a suitable catalyst we have:

where:

The decay of this excited state[] to a lower energy level causes light emission. In theory, one photon of light should be given off for each molecule of reactant. This is equivalent to Avogadro's number of photons per mole of reactant. In actual practice, non-enzymatic reactions seldom exceed 1% QC, quantum efficiency.

In a chemical reaction, reactants collide to form a transition state, the enthalpic maximum in a reaction coordinate diagram, which proceeds to the product. Normally, reactants form products of lesser chemical energy. The difference in energy between reactants and products, represented as , is turned into heat, physically realized as excitations in the vibrational state of the normal modes of the product. Since vibrational energy is generally much greater than the thermal agitation, it rapidly disperses in the solvent through molecular rotation. This is how exothermic reactions make their solutions hotter. In a chemiluminescent reaction, the direct product of the reaction is an excited electronic state. This state then decays into an electronic ground state and emits light through either an allowed transition (analogous to fluorescence) or a forbidden transition (analogous to phosphorescence), depending partly on the spin state of the electronic excited state formed.


...
Wikipedia

...