*** Welcome to piglix ***

Linear amplifier


A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment.

Linearity refers to the ability of the amplifier to produce signals that are accurate copies of the input, generally at increased power levels. Load impedance, supply voltage, input base current, and power output capabilities can affect the efficiency of the amplifier.

Class-A amplifiers can be designed to have good linearity in both single ended and push-pull topologies. Amplifiers of classes AB1, AB2 and B can be linear only when a tuned tank circuit is employed, or in the push-pull topology, in which two active elements (tubes, transistors) are used to amplify positive and negative parts of the RF cycle respectively. Class-C amplifiers are not linear in any topology.

There are a number of amplifier classes providing various trade-offs between implementation cost, efficiency, and signal accuracy. Their use in RF applications are listed briefly below:

Although class-A power amplifiers (PA) are best in terms of linearity, their efficiency is rather poor as compared with other amplification classes such as “AB”, “C” and Doherty amplifiers. However, higher efficiency leads to higher nonlinearity and PA output will be distorted, often to extent that fails the system performance requirements. Therefore, class-AB power amplifiers or other variations are used with some suitable form of linearization schemes such as feedback, feedforward or analog or digital predistortion (DPD). In DPD power amplifier systems, the transfer characteristics of the amplifier are modeled by sampling the output of the PA and the inverse characteristics are calculated in a DSP processor. The digital baseband signal is multiplied by the inverse of PA nonlinear transfer characteristics, up-converted to RF frequencies and is applied to the PA input. With careful design of PA response, the DPD engines can correct the PA output distortion and achieve higher efficiencies.


...
Wikipedia

...