A linear circuit is an electronic circuit in which, for a sinusoidal input voltage of frequency f, any steady-state output of the circuit (the current through any component, or the voltage between any two points) is also sinusoidal with frequency f. Note that the output need not be in phase with the input.
An equivalent definition of a linear circuit is that it obeys the superposition principle. This means that the output of the circuit F(x) when a linear combination of signals ax1(t) + bx2(t) is applied to it is equal to the linear combination of the outputs due to the signals x1(t) and x2(t) applied separately:
It is called a linear circuit because the output of such a circuit is a linear function of its inputs. Informally, a linear circuit is one in which the electronic components' values (such as resistance, capacitance, inductance, gain, etc.) do not change with the level of voltage or current in the circuit. Linear circuits are important because they can amplify and process electronic signals without distortion. An example of an electronic device that uses linear circuits is a sound system.
A linear circuit is one that has no nonlinear electronic components in it. Examples of linear circuits are amplifiers, differentiators, and integrators, linear electronic filters, or any circuit composed exclusively of ideal resistors, capacitors, inductors, op-amps (in the "non-saturated" region), and other "linear" circuit elements.